

Recent results on SIDIS from pion production at CLAS

Patrizia Rossi

Laboratori Nazionali di Frascati-INFN on behalf of the CLAS Collaboration

- Introduction to TMD & SIDIS
- pion TMDs with CLAS @ 6 GeV
 - unpolarized and longitudinally polarized targets
 - future data with transversely polarized target
- Conclusion

The nucleon parton model

In the collinear approximation:

$$\vec{\mathbf{p}} \longrightarrow \vec{\mathbf{p}} = \mathbf{x}\vec{\mathbf{p}}$$

$$\vec{\mathbf{p}} = \mathbf{x}\vec{\mathbf{P}} \qquad f_1(x), g_1(x), h_1(x)$$

Parton transverse momentum

more complex PDF

⇒TMDs

$$\vec{p} = xP + k_T$$

$\vec{k_T}$	$\vec{p} = x\vec{P} + \vec{k_T}$	$f_1(x, \overset{\rightarrow}{k_T}),$	$g_1(x, \overset{\rightarrow}{k_T}),$	$h_1(x, \overset{\rightarrow}{k_T})$
				F (

leading twist TMDs

		quark			
		U	L	T	
n u c l e o n	U	f1 •		$\mathbf{h}_{\mathrm{I}}^{\perp}$ \bullet - \bullet	
	L		g1 • - • -	h_{1L}^{\perp} \longrightarrow - \bigcirc	
	Т	$\mathbf{f}_{ ext{IT}}^{\perp}$ \bullet - $lacktrian$	$g_{1T}^{\perp} \stackrel{\uparrow}{\bullet} - \stackrel{\uparrow}{\bullet}$	$h1 \stackrel{\uparrow}{\bullet} - \stackrel{\uparrow}{\bullet}$ $h_{1T}^{\perp} \stackrel{\uparrow}{\bullet} - \stackrel{\uparrow}{\bullet}$	

• H1 e p

NMC

 ZEUS e⁺p △ BCDMS

SIDIS @ CLAS

$$\sigma = \sigma_{UU} + \frac{S_T}{\sigma_{UT}} \sin(\phi - \phi_S) + \lambda \frac{S_T}{\sigma_{LT}} \cos(\phi - \phi_S) + \dots$$

$$A_{UL}^{\sin2\phi} = \frac{\sigma_{UL}}{\sigma_{UU}}$$

azimuthal asymmetries due to correlations of spin and transverse momentum of quarks

moments of ϕ

SIDIS Cross-Section

$$d\sigma^{h} \propto \sum f^{H \to q}(x, \mathbf{k}_{T}) \otimes d\sigma_{q}(y) \otimes D^{q \to h}(z, \mathbf{p}_{\perp}) \quad d\sigma^{h} \propto d\sigma_{q}(y) \otimes \mathsf{FF}$$

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_{h} \, dP_{h\perp}^{2}} = \underbrace{\frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)}_{+\varepsilon \cos(2\phi_{h})} \left[F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1-\varepsilon)} \int_{\sin\phi_{h}}^{\sin\phi_{h}} F_{LU}(\mathbf{x}, \mathbf{P}_{\mathsf{T}'}\mathbf{z}, \mathbf{Q}^{2})\right] \quad \mathsf{Long. Poly}$$

$$+ \varepsilon \cos(2\phi_{h}) \left[F_{UU}^{\cos 2\phi} + \lambda_{e} \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_{h} F_{LU}^{\sin\phi_{h}} + F_{LU}(\mathbf{x}, \mathbf{P}_{\mathsf{T}'}\mathbf{z}, \mathbf{Q}^{2})\right] \quad \mathsf{Long. Poly}$$

$$+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \int_{-\varepsilon}^{\sin(\phi_{h} - \phi_{s})} \left(F_{UL}^{\sin(\phi_{h} - \phi_{s})} + \varepsilon F_{UL}^{\sin(\phi_{h} - \phi_{s})}\right) + \varepsilon F_{UL}^{\sin(\phi_{h} - \phi_{s})}\right] \quad \mathsf{Trans. P}$$

$$+ |S_{\perp}| \left[\sin(\phi_{h} - \phi_{s}) \left(F_{UL}^{\sin(\phi_{h} - \phi_{s})} + \varepsilon F_{UL}^{\sin(\phi_{h} - \phi_{s})}\right) + \varepsilon \sin(3\phi_{h} - \phi_{s}) F_{UL}^{\sin(3\phi_{h} - \phi_{s})}\right] \quad \mathsf{Experime}$$

$$+ \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_{s} F_{UT}^{\sin(\phi_{h} + \phi_{s})} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_{h} - \phi_{s}) F_{UT}^{\sin(2\phi_{h} - \phi_{s})}$$

$$+ |S_{\perp}| \lambda_{e} \left[\sqrt{1-\varepsilon^{2}} \cos(\phi_{h} - \phi_{s}) F_{LT}^{\cos(\phi_{h} - \phi_{s})}\right] + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_{s} F_{LT}^{\cos\phi_{s}}$$

$$+ \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_{h} - \phi_{s}) F_{LT}^{\cos(2\phi_{h} - \phi_{s})}\right], \quad \mathsf{18 st}$$

$$\mathsf{func}$$

Unpol. target ✓

Long. Pol. target ✓

Trans. Pol. Target Experiment in preparation

18 structure functions !!

Bacchetta et al., JHEP 0702:093,2007

ep \rightarrow e' π X : Unp. & Long. Pol. Target

BSA: e p \rightarrow e' π^0 X

π^0 BSA Asymmetry results

0.25

 $x_B(P_T=0.3, 0.4 < z < 0.7)$

-0.06

- Drop with P_T below 1 GeV/c
- A_{LU} in agreement with HERMES data
- Comparable BSA for π^0 and π^+ Small Collins type contributions for π^+ ?

Main contribution?

Long. Pol. Target: Kotzinian-Mulders asymmetry

Leading twist

$$\frac{d\sigma}{dxdydzd^{2}\vec{P}_{h}} = \frac{4\pi\alpha^{2}s}{Q^{4}} [\lambda_{e}\lambda x(1-y/2)F_{LL}] \longrightarrow g_{1}D_{1}$$

$$+x(1-y)\sin(2\phi)F_{UL}] \longrightarrow h_{1}^{\perp}H_{1}^{\perp}$$

Kotzinian & Mulders
$$S_L \frac{\vec{k}_T}{M} h_{1L}^{\perp}(x, k_T^2) \longrightarrow \underbrace{k_{\perp}}_{S_q} - \underbrace{k_{\perp}}_{S_q}$$

Correlation between the transverse momentum and transverse spin of quarks in longitudinally polarized proton

Collins effect measurement with longitudinally pol. target provide access to the chiral-odd Mulders distribution functions

Long. Pol. Target: Kotzinian-Mulders asymmetry

$$e p \rightarrow e' \pi^{+/-/0} X$$

Transversely polarized quarks in a longitudinally polarized nucleon

$$A_{UL}^{\sin2\phi}\sim h_{1L}^{\perp}H_{1}^{\perp}\sin2\phi$$

~5 days data taking (2001)

- $A_{UL} \int$ over the full kinematics
- Fitting function:
 p₁sinφ+p₂sin2φ

H. Avakian et al. arXiv:1003.4549

- No indication of Collins effect for π^0
- Non-zero negative asymmetry for $\pi^{+/-}$

~10% of E05-113 data End data taking sep. 2009

φ (deg)

Long. Pol. Target: Kotzinian-Mulders asymmetry

- \bullet Total good events accumulated on proton with CLAS in 3 months \sim 10 times statistics accumulated by HERMES in 2 years
- Analysis Topics : $\pi^{+/-/0}$ $A_{UL}(\sin 2\phi)$, A_{LL} , $A_{LU}(\sin \phi)$ $\rho^{+/-}$ $A_{UI}(\sin 2\phi)$

Long. Pol. Target: A₁-P_T dependence

Different width of TMDs of quarks with different flavor and polarizations

$$R = \frac{k_{\perp} width \ dist(g_1)}{k_{\perp} width \ dist(f_1)}$$

$$- - - \cdot R = 0.40$$

$$\dots R = 0.68$$

$$- \cdot - \cdot R = 1.0$$

- Data shows slight preference for R< 1
- New experiment with 10 times more data will study the P_T-dependence for different quark helicities and flavors for bins in x

Transversely polarized HD-ice target

Target used by LEGS at BNL with photon beam

Pros

- Small field ($\int Bdl \sim 0.005 0.05Tm$)
- Small dilution factor
- Less radiation length
- Less nuclear background
- Wider acceptance
- much better FOM, especially for deuteron

Need to demonstrate that the target can remain polarized for long periods with an electron beam with currents of order of 1-2 nA

- The target is now at Jlab and all equipment moved to the new HDice lab
 - Currently installing dilution refrigerators
 - Parallel development of new in-beam cryostat
 - Installation ~ January 2011
 - Test with electrons ~ April 2011

TMDs with transversely polarized target

Conclusions and Outlook

- Transverse Momentum Dependent (TMD) distributions of partons contain novel information on the nucleon structure
- TMDs can be accessed in SIDIS with polarized leptons and nucleons by observing the azimuthal distributions of produced hadrons.
 - •Latest experimental data indicate that spin-orbit correlations are significant and lead to observable SSAs
- CLAS in Hall B at Jlab is playing a major role in these studies
- Interesting results obtained from the π^0 BSA measurement
- The new CLAS experiment with longitudinally polarized NH3 and ND3 targets provides superior sample of events allowing multidimensional binning to study:
 - SSAs for π and ρ in SIDIS
 - Higher Twists and quark-gluon correlations
 - Double spin asymmetries and flavor decomposition of helicity dist.
- New data are expecting soon with a transversely polarized target